Pharmacology and toxicology of diphenyl diselenide in several biological models.
نویسندگان
چکیده
The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of delta-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.
منابع مشابه
Interaction profile of diphenyl diselenide with pharmacologically significant thiols.
Diphenyl diselenide has shown interesting biological activities in various free-radical-induced damage models and can be considered as a potential candidate drug against oxidative stress. Apart from its anti-oxidant activity, this compound can oxidize various thiols. However there are no detailed studies in the literature about the thiol oxidase-like activity of this compound against biological...
متن کاملDiphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: A pathway for their neuroprotective effects
Thioredoxin reductase (TrxR) isoforms play important roles in cell physiology, protecting cells against oxidative processes. In addition to its endogenous substrates (Trx isoforms), hepatic TrxR can reduce organic selenium compounds such as ebselen and diphenyl diselenide to their selenol intermediates, which can be involved in their hepatoprotective properties. Taking this into account, the ai...
متن کاملProtective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions.
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3'3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) sig...
متن کاملReduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity.
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although ...
متن کاملBiological effect of di (p-methylbenzoyl) diselenide (in vitro) and its acute hepatotoxicity on rats (in vivo)
Selenium plays an important role in biological system due to its incorporation in glutathione peroxidases and thioredoxin reductase as prosthetic group, the pharmacological studies of synthetic organoseleno-compounds revealed these molecules to be used as antioxidants, enzyme inhibitors, neuroprotectors, antitumor, anti-infectious agents, cytokine inducers and immuno-modulators. The present stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
دوره 40 10 شماره
صفحات -
تاریخ انتشار 2007